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Approximate solutions by artificial
neural network of hybrid fuzzy
differential equations
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Abstract
In this article, we propose a new approach to solve the hybrid fuzzy differential equations based on the feed-forward
neural networks. We first replace it by a system of ordinary differential equations. A trial solution of this system involves
two parts. The first part satisfies the initial condition and contains no adjustable parameters; however, the second part
involves a feed-forward neural network containing adjustable parameters (the weights). This method shows that using
neural networks provides solutions with good generalization and the high accuracy.
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Introduction

Fuzzy differential equations (FDEs) are significant for
studying and solving large proportions of problems in
many topics of applied mathematics, particularly in
relation to physics, geography, medicine, biology, con-
trol chaotic systems, bioinformatics and computational
biology, synchronize hyperchaotic systems, economics
and finance, and so on.1–3 In lots of applications, some
of the parameters are represented by fuzzy numbers
rather than the crisp numbers, and hence, it is essential
to develop mathematical models and numerical proce-
dures which would have appropriately treated to gen-
eral FDEs. The knowledge about differential equations
is often incomplete or vague. The FDEs were formu-
lated by Kaleva4 and Seikkala5 initially. Hybrid systems
received too much attention in the recent literatures as
well. Hybrid systems evolve in continuous time, like dif-
ferential systems, but undergoing a fundamental change
in their governing equations at a sequence of discrete
times. When a continuous time dynamics of a hybrid
system is given by a FDE, the system is called a hybrid

fuzzy differential system. For analytical results on
hybrid fuzzy differential equations (HFDEs), see
Lakshmikantham and Liu6 and Lakshmikantham and
Mohapatra.7 Hybrid systems are devoted for modeling,
designing, and validating interactive systems of com-
puter programs and continuous systems as well. These
control systems which are capable of controlling com-
plex systems have discrete event dynamics as well as
continuous time dynamics that can be modeled by
hybrid systems. The differential systems containing
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fuzzy-valued functions and interaction with a discrete
time controller are named as hybrid fuzzy differential
systems (HFDEs). Several numerical techniques have
been applied for solving HFDEs. For instance,
Pederson and Sambandham8,9 investigated the numeri-
cal solution of these equations using the Euler and
Runge–Kutta methods. Prakash and Kalaiselvi10 stud-
ied the predictor-corrector method for HFDEs. In addi-
tion, Fard and Bidgoli11 solved HFDEs by the
Nystrom method. Similarly, Kim and Sakthivel12 stud-
ied the predictor–corrector method for HFDEs, and
Allahviranloo and Salahshour13 investigated the
numerical solution of HFDEs, using the Euler method
under characterization theorem and Bede’s differentia-
bility. Ahmadian et al.14–16 applied Runge–Kutta
method with lower function evaluations and the
reduced the number of function evaluations for solving
HFDEs. Paripour et al.17 applied Adomian decomposi-
tion method for solving HFDEs.

In this study, we develop numerical methods for
HFDEs by an application of artificial neural network.
Lagaris et al.18 designed artificial neural networks for
solving ordinary differential equations (ODEs) and par-
tial differential equations (PDEs). They used multilayer
perceptron to estimate the solution of differential equa-
tions. In 2010, Effati and Pakdaman19 used artificial
neural networks for solving FDEs. Similarly,
Pakdaman et al.20 solved differential equations of frac-
tional order using an optimization technique based on
training artificial neural network. Their neural network
model was trained over an interval (over which the dif-
ferential equation must be solved), so the inputs of the
neural network model were the training points. Bede21

proved a characterization theorem which states that
under certain conditions, an FDE under the Hukuhara
differentiability is equivalent to a system of ODEs.
Moreover, Bede also noticed that this characterization
theorem can aid to solve FDEs numerically through
converting the FDEs to a system of ODEs, which later
could be solved by numerical methods. In this article,
using the characterization theorem, we generalize a
fourth-order Runge–Kutta method that originally pre-
sented to solve the HFDEs. That is, we substitute the
original initial value problem with two parametric
hybrid ordinary differential systems. Then, the extension
of Bede’s characterization theorem for HFDEs, which
was investigated by Pederson and Sambandham,22 is
employed to generalize the derivatives. Finally, these
results are applied to solve the HFDEs numerically by
the fourth-order reduced Runge–Kutta (RRK) method.

Preliminaries

Definition 1. A fuzzy number is a function ~u : R! ½0, 1�
with the following properties:23

1. ~u is normal, that is, 9t0 2 R such that ~u(t0)= 1;
2. ~u is a fuzzy convex set, that is

~u(at1 +(1� a)t2) � minf~u(t1), ~u(t2)g
8t1, t2 2 R, a 2 ½0, 1�

3. ~u is the upper semi-continuous on R;

4. ft 2 R : ~u(t). 0g is a compact set, where S

denotes the closure of S.

The set of all fuzzy numbers is denoted by E.
Kaleva4 gave an alternative definition which yields the
same E.

Definition 2. An ordered pair of functions (u1(r),
u1(r)), 0� r� 1 presents an arbitrary fuzzy number, in
parametric form, which satisfies the following
requirements:23

1. u1(r) is a bounded left continuous non-
decreasing on [0, 1];

2. u1(r) is a bounded left continuous non-
increasing function on [0, 1];

3. u1(r)� u1(r), 0� r� 1.

The following equations define the addition and the
scalar multiplication of fuzzy numbers in E:

1. ~u1 � ~u2 = u1(r)+ u2(r), u1(r)+ u2(r)
� �

;

2. (l� ~u1)=
(lu1(r), lu1(r)), l � 0

(lu1(r), lu1(r)), l\0

�
.

Definition 3. The Hausdorff distance between ~u1 and ~u2

for arbitrary fuzzy numbers, ~u1 =(u1(r), u1(r)) and
~u2 =(u2(r), u2(r)), is

24

D(~u1, ~u2)= sup
r2½0, 1�

max ju1(r)� u2(r)j, ju1(r)� u2(r)j
� �

The following properties hold:

1. (E,D) is a complete metric space;
2. D(~u1 � ~u2, ~u3 � ~u2)=D(~u1, ~u3), 8~u1, ~u2, ~u3 2 E;
3. D(l� ~u1, l� ~u2)= jljD(~u1, ~u2), 8~u1, ~u2 2 E,
8l 2 R;

4. D(~u1 � ~u2, ~u3 � ~u4)�D(~u1, ~u3)+D(~u2, ~u4),
8~u1, ~u2, ~u3, ~u4 2 E.

Definition 4. Let f : R! E is a fuzzy-valued function. If
for arbitrary fixed t0 2 R and e . 0, d\0 such that25

jt � t0j\d) D(f (t), f (t0))\e

f is said to be continuous.
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Definition 5. Suppose x, y 2 E. If there exists z 2 E such
that x= y� z, then z is called the Hukuhara difference
(H-difference) of x and y, and it is denoted by x� y.26

In this article, the sign � stands for H-difference, and
also note that x� y 6¼ x+(� 1)y.

Definition 6. Let f : T ! E is a fuzzy function and
T 	 R. We say f is differentiable at t0 2 T , if there
exists an element f 0(t0) 2 E such that limits26

lim
Dt!0+

f (t0 +Dt)� f (t0)

Dt

and

lim
Dt!0+

f (t0)� f (t0 � Dt)

Dt

exist and are equal to f 0(t0). Here, the limits are taken in
the metric space (E,D).

The above definition is a generalization of the H-dif-
ferentiability of a set-valued function. From Bhaskar
et al.,27 it follows that a H-differentiable function has
increasing length of support, so this definition of a deri-
vative is very restrictive. In this regard, Bede and Gal28

introduced a more generalized definition of H-differ-
entiability which is our interest in this article.

Definition 7. Let f : (a, b)! E and x0 2 (a, b). We say
that f is strongly generalized H-differentiable at t0 if
there exists an element f 0(t0) 2 E, such that28

1. For all Dt . 0 sufficiently small, 9f (t0 +Dt)
�f (t0), 9f (t0)� f (t0 � Dt) and limits (in the
metric D)

lim
Dt!0

f (t0 +Dt)� f (t0)

Dt

= lim
Dt!0

f (t0)� f (t0 � Dt)

Dt
= f 0(t0)

or

2. For all Dt . 0 sufficiently small, 9f (t0)�
f (t0 +Dt), 9f (t0 � Dt)� f (t0) and limits (in the
metric D)

lim
Dt!0

f (t0)� f (t0 +Dt)

�Dt

= lim
Dt!0

f (t0 � Dt)� f (t0)

�Dt
= f 0(t0)

or

3. For all Dt . 0 sufficiently small, 9f (t0 +Dt)�
f (t0), 9f (t0 � Dt)� f (t0) and limits (in the
metric D)

lim
Dt!0

f (t0 +Dt)� f (t0)

Dt

= lim
Dt!0

f (t0 � Dt)� f (t0)

�Dt
= f 0(t0)

or

4. For all Dt . 0 sufficiently small,
9f (t0)� f (t0 +Dt), 9f (t0)� f (t0 � Dt) and lim-
its (in the metric D)

lim
Dt!0

f (t0)� f (t0 +Dt)

�Dt

= lim
Dt!0

9f (t0)� f (t0 � Dt)

Dt
= f 0(t0)

Theorem 1 (Bede’s characterization theorem21). Let us con-
sider the fuzzy initial value problem (FIVP)

y0(x)= f (x, y(x))
y(x0)= y0

�
ð1Þ

where f : ½x0, x0 + a�3 E! E is such that

1. ½ f (x, y)�r = ½f r(x, y, y), f
r
(x, y, y)�;

2. f r and f
r
are equicontinuous (i.e. for any e . 0

there is a d . 0 such that jf r(x, y, z)�
f r(x1, y1, z1)j\e and jf r

(x, y, z)� f
r
(x1, y1, z1)j\e

for all r 2 ½0, 1�, whenever (x, y, z), (x1, y1, z1)
2 ½x0, x0 + a�3R

2 and k (x, y, z)� (x1, y1, z1) k
\d) and uniformly bounded on any bounded
set;

3. There exists on an L . 0 such that

j f r(x, y, z)� f r(x, y1, z1)j � Lmaxfjy1 � yj,
jz1 � zjg for all r 2 ½0, 1�
j f r

(x, y, z)� f
r
(x, y1, z1)j � Lmaxfjy1 � yj,

jz1 � zjg for all r 2 ½0, 1�

Then, the FIVP (equation (1)) and system of ODEs

(yr(x))0= f r(x, yr, yr)

(yr(x))0= f
r
(x, yr, yr)

yr(x0)= yr

0

yr(x0)= yr
0

8>>><
>>>: ð2Þ

are equivalent.

The hybrid fuzzy differential system

Consider the following hybrid fuzzy differential system

y0(x)= f (x, y(x), lk(yk)), x 2 ½xk , xk + 1�
y(xk)= yk

�
ð3Þ
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where 0� x0\x1\ 
 
 
\xk\ 
 
 
 , xk ! ‘, f 2
C½R+ 3 E 3 E,E�, lk 2 C½E,E�.

To be specific, the system would look like

y0(x)=

y00(x)= f (x, y0(x), l0(y0)), y0(x0)= y0, x0� x� x1

y01(x)= f x, y1(x), l1(y1)ð Þ, y1(x1)= y1, x1� x� x2

..

. ..
.

y0k(x)= f x, yk(x), lk(yk)ð Þ, yk(xk)= yk , xk � x� xk + 1

..

. ..
.

8>>>>>><
>>>>>>:

ð4Þ

Assuming that the existence and uniqueness of solu-
tions of equation (3) hold for each ½xk , xk + 1�, by the
solution of equation (3), we obtain the following
function

y(x)= y(x, x0, y0)=

y0(x), x0� x� x1

y1(x), x1� x� x2

..

. ..
.

yk(x), xk � x� xk + 1

..

. ..
.

8>>>>>><
>>>>>>:

ð5Þ

We note that the solutions of equation (3) are piece-
wise differentiable in each interval for x 2 ½xk , xk + 1�, for
a fixed yk 2 E and k = 0, 1, 2, . . .. We replace equation
(3) by the following equivalent system

y0(x)= f x, y(x), lk(yk)ð Þ, y(xk)= yk

y0(x)= f x, y(x), lk(yk)ð Þ, y(xk)= yk

�
ð6Þ

The parametric form of the above system is given by

y0(x, r)=F x, y(x, r), y(x, r), lk(yk)(r), lk(yk)(r)
� �

, y(xk , r)= yk(r)

y0(x, r)=G x, y(x, r), y(x, r), lk(yk)(r), lk(yk)(r)
� �

, y(xk , r)= yk(r)

8<
:

ð7Þ

where x 2 ½xk , xk + 1� and r 2 ½0, 1�. Using Bede’s charac-
terization theorem proposed by Bede,21 Pederson and
Sambandham22 generalized the following characteriza-
tion theorem for HFDEs.

Theorem 2. Consider the HFDE (3) expanded as
equation (4) where for k = 0, 1, 2, . . ., and each
fk : ½xk , xk + 1�3 E! E, we have:22

1. ½fk(x, y)�r = f r

k
(x, y, y), f

r

k(x, y, y)
h i

;
2. f r

k
and f

r

k are equicontinuous and uniformly
bounded on any bounded set;

3. There exists a Lk . 0 such that

jf r

k
(x, y, z)� f r

k
(x, y1, z1)j � Lkmaxfjy1 � yj,

jz1 � zjg for all r 2 ½0, 1�
jf r

k(x, y, z)� f
r

k(x, y1, z1)j � Lkmaxfjy1 � yj,
jz1 � zjg for all r 2 ½0, 1�

Then, the FIVP (equation (3)) and system of ODEs

(yr

k
(x))0= r

k(x, y
r

k
, yr

k)

(yr
k(x))

0= f
r

k(x, y
r

k
, yr

k)

yr

k
(xk)= yr

k�1
(xk), if k . 0, yr

0
(x0)= yr

0

yr
k(xk)= yr

k�1(xk), if k . 0, yr
0(x0)= yr

0

8>>><
>>>:

are equivalent.

Neural networks

Using neural networks provides solutions with very
good generalizability (such as differentiability).
However, an important feature of multilayer percep-
trons is their utility to approximate functions, which
leads to a wide applicability in most problems. In this
article, the function approximation capability of feed-
forward neural networks is used by expressing the trial
solutions for system (7) as the sum of two terms (see
equation (9)). The first term satisfies the initial condi-
tions and does not contain adjustable parameters. The
second term involves a feed-forward neural network to
be trained, so satisfies the differential equations. Since
it is known as a multilayer perceptron with one hidden
layer which can approximate any function to arbitrary
accuracy, the multilayer perceptron is used as the type
of the network architecture.

If y
T
(x, r, p) is a trial solution for the first equation in

system (3) and yT (x, r, p) is a trial solution for the sec-
ond equation in system (3) where p and p are adjustable
parameters (indeed y

T
(x, r, p) and yT (x, r, p) are approxi-

mations of y
T
(x, r) and yT (x, r), respectively), then a dis-

cretized issue of system (3) might be converted to the
optimization problem

min
v!
Xm

i= 1

y0T (xi, r, v)� F½xi, yT
(xi, r, v), yT (xi, r, v), lk(yk)(r), lk(yk)(r)�

� �2

+ y0T (xi, r, v)� G½xi, yT
(xi, r, v), yT (xi, r, v), lk(yk)(r), lk(yk)(r)�

� �2

8><
>:

9>=
>; ð8Þ

where v!=(v, v) includes all adjustable parameters
with the initial conditions

y
T
(x0, r, v)= y

0
(r), yT (x0, r, v)= y0(r)

Each trial solution y
T

and yT employs one feed-
forward neural network for which the corresponding
networks are denoted by N and N , with adjustable
parameters v and v, respectively. Thus, y

T
and yT can

be selected as follows
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y0T (x, r, v)= y(x0, r)+ (x� x0)N (x, r, v)

yT (x, r, v)= y(x0, r)+ (x� x0)N (x, r, v)

�
ð9Þ

where N and N are single-output feed-forward neural
networks with adjustable parameters v and v, respec-
tively. Here, x and r are the network inputs. It is easy
to see that in equation (9), y

T
and yT satisfy the initial

conditions. From equation (9), it is easy to show that

y0T (x, r, v)=N (x, r, v)+ (x� x0)
∂N

∂x

y0T (x, r, v)=N (x, r, v)+ (x� x0)
∂N

∂x

8>><
>>: ð10Þ

Now suppose a multilayer perceptron has a hidden
layer with H sigmoid units and a linear output unit
(Figure 1). Therefore, we have

N =
Pm

i= 1

wis(ti), ti = ai1x+ ai2r + bi

N =
Pm

i= 1

wis(ti), ti = ai1x+ ai2r + bi

8>><
>>: ð11Þ

where s(t) is the sigmoid transfer function, a and a

(m 3 2 matrices) are the weights of input layers, and b

and b (m 3 1 matrices) are the bias vectors of input
units. w and w (m 3 1 matrices) are the weight vectors

of output units, and s(t)= 1=(1+ e�t) is the sigmoid
transfer function. The following is obtained

∂N

∂x
=
Xm

i= 1

wiai1s0(ti)

∂N

∂x
=
Xm

i= 1

wiai1s0(ti)

8>>>><
>>>>:

ð12Þ

where s0(ti) is the first derivative of the sigmoid
function. Now, if we substitute equation (10) in (8), the
constrained optimization problem (8) might be
changed with the unconstrained optimization problem
as follow

min
v!
Xn

i= 1

(N (xi, r, v)+ (xi � x0)
∂N

∂x
� F½xi, y

T
(xi, r, v), yT (xi, r, v), lk(yk)(r), lk(yk)(r)�)2

+(NT (xi, r, v)+ (xi � x0)
∂N

∂x
� G½xi, y

T
(xi, r, v), yT (xi, r, v), lk(yk)(r), lk(yk)(r)�)2

8>><
>>:

9>>=
>>; ð13Þ

Numerical example

We use the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) quasi-Newton method to minimize the objec-
tive function in the MATLAB optimization toolbox.
We take e(x, r)= y

T
(x, r)� y

a
(x, r) and e(x, r)=

yT (x, r)� ya(x, r), where yT =(y
T
, yT ) is the approxi-

mated solution and ya =(y
a
, ya) is the known exact

solution. We use multilayer perceptron consisting of 1
hidden layer with 10 hidden units and 1 linear output
unit.

Example. Assume the hybrid FIVP

y0(x)= y(x)+m(x)lk(yxk
), x 2 ½xk , xk + 1�, xk = k, k = 0, 1, . . .

y(0)= ½r � 0:25, 2� 1:25r�

�
ð14Þ

where

Figure 1. Architecture of the perceptron.

Paripour et al. 5



m(x)=
2(t(mod1)), x(mod1)� 0:5

2(1� t(mod1)), x(mod1). 0:5

�
ð15Þ

and

lk(m)=
b0, k = 0

m, k 2 f1, 2, . . .g

�
ð16Þ

for which b0 2 En is defined as b0(y)= 1 if y= 0 andb0(y)= 0 if y 6¼ 0.
The hybrid fuzzy initial problem (equation (14)) is

equivalent to the following system of FIVPs

y00(x)= y0(x), x 2 ½0, 1�
y(0)= ½r � 0:25, � 1:125r + 1:875�
y0i(x)= xi(t)+m(x)yi(xi), x 2 ½xi, xi+ 1�

8<
:

In equation (14), y(x)+m(x)lk(yxk
) is a continuous

function of x, y, and lk(yxk
). Therefore, referring exam-

ple by Kaleva,4 for each k = 0, 1, 2, . . . the FIVP

y0(x)= f (x, y(x), lk(yk)), x 2 ½xk , xk + 1�
y(xk)= yk

�

has a unique solution on ½xk , xk + 1�.
Exact solution for x= 1 is

y(1, r)= ½(r � 0:25)e, (� 1:125r + 1:875)e�, r 2 ½0, 1�

The trial solutions in the neural form are as follows
for x 2 ½0, 1�

y
T
(x)= (r � 0:25)+ xN (x, r, v)

yT (x)= (� 1:125r + 1:875)+ xN (x, r, v)

�

The exact solution for x= 1:5 is

y(1:5, r)= ½(5:291r � 1:3227),

(� 5:9523r + 9:9202)�, r 2 ½0, 1�

The trial solutions for x 2 ½1, 1:5� are

y
T
(x)= (5:291r � 1:3227)+ (x� 1)N(x, r, v)

yT (x)= (� 5:9523r + 9:9202)+ (x� 1)N (x, r, v)

�

The exact solution for x= 2 is

y(2, r)= ½(9:5992r � 2:3415),

(�10:4312r + 17:6889)�, r 2 ½1:5, 2�

The trial solutions for x 2 ½1:5, 2� are

y
T
(x)= (9:5992r � 2:3415)+ (x� 1:5)N(x, r, v)

yT (x)= (� 10:4312r + 17:6889)+ (x� 1:5)N (x, r, v)

�

The numerical results of example are given in
Tables 1–3. The exact and approximate solutions by
artificial neural network are compared and plotted at
x= 1, x= 1:5, and x= 2 in Figures 2–4, respectively. It
is deduced that the results are very close to the exact
solutions which confirm the validity and feasibility of
this method.

Conclusion

In summary, we defined a new method for solving
HFDEs. We demonstrated the ability of neural net-
works for approximating the solutions of FDEs. By
comparing our achievements with the results obtained
using numerical methods, it is clear that our proposed
method gives more accurate approximations. Also bet-
ter results (specially in nonlinear cases) might be possi-
ble if we use more neurons or training points. In
addition, after solving a FDE, we obtained the solution
at any arbitrary point in the training interval (even
between training points). Applicability in function
approximations of neutral networks is the main reason
for using neural networks. More research is in progress
for applying and extending this new approach for sol-
ving nth-order FDEs as well as a system of FDEs. The
numerical results showed that the method has good
accuracy and it is efficient.

Table 1. Comparison of the approximated solutions and the exact solutions on [0, 1].

r Exact solution (y
a
(1, r), ya(1, r)) Approximated solution (y

T
(1, r), yT(1, r)) Absolute error

0.0 (–0.67957045, 5.0967784) (–0.67957036, 5.0967784) (6.215545e207, 1.875812e206)
0.1 (–0.40774227, 4.7909717) (–0.40774282, 4.7909717) (2.279674e206, 8.964055e207)
0.2 (–0.13591409, 4.4851650) (–0.13591370, 4.4851650) (1.967348e207, 2.704311e207)
0.3 (0.13591409, 4.1793583) (0.13591389, 4.1793583) (1.503723e206, 2.986754e207)
0.4 (0.40774227, 3.8735516) (0.40774239, 3.8735516) (1.733932e206, 1.385048e206)
0.5 (0.67957045, 3.5677448) (0.67957043, 3.5677448) (7.522059e207, 1.104163e206)
0.6 (0.95139863, 3.2619381) (0.95139853, 3.2619382) (2.363650e207, 5.354381e207)
0.7 (1.22322682, 2.9561314) (1.12232269, 2.9561314) (1.381800e207, 5.435571e207)
0.8 (1.49505500, 2.6503247) (1.4950549, 2.6503247) (2.570600e207, 2.209716e206)
0.9 (1.76688318, 2.3445180) (1.7668831, 2.3445180) (6.189354e207, 7.521389e208)
1.0 (2.03871137, 2.03871137) (2.0387113, 2.0387113) (4.528218e206, 4.528218e206)

6 Advances in Mechanical Engineering



Table 2. Comparison of the approximated solutions and the exact solutions on [1, 1.5].

r Exact solution (y
a
(1:5, r), ya(1:5, r)) Approximated solution (y

T
(1:5, r), yT(1:5, r)) Absolute error

0.0 (–1.3227000, 9.9202000) (–1.3226999, 9.9202001) (5.689375e207, 1.803075e207)
0.1 (–0.79360000, 9.93249699) (–0.79359992, 9.3249704) (5.323851e207, 1.929814e207)
0.2 (–0.26450000, 8.7297400 (–0.26450009, 8.7297400) (8.652878e208, 3.078635e207)
0.3 (0.26460000, 8.1345099) (0.26459997, 8.1345101) (1.503723e206, 2.907790e207)
0.4 (0.79370000, 7.5392800) (0.79369997, 7.5392796) (3.160333e208, 4.194941e207)
0.5 (1.32280000, 6.9440499) (1.3227999, 6.9440496) (1.548584e207, 1.045301e206)
0.6 (1.85190000, 6.3488200) (1.8519000, 6.3488203) (1.394677e207, 7.646418e207)
0.7 (2.38100000, 5.7535900) (2.3809999, 5.7535900) (4.624456e208, 3.001244e207)
0.8 (2.91010000, 5.1583599) (2.9101000, 5.1583601) (7.806130e208, 4.992620e207)
0.9 (3.43920000, 4.5631299) (3.4392000, 4.5631302) (2.682584e207, 1.344480e207)
1.0 (3.96830000, 3.9678999) (3.9682999, 3.9678999) (2.320238e207, 0.256288e208)

Table 3. Comparison of the approximated solutions and the exact solutions on [1.5, 2].

r Exact solution (y
a
(2, r), ya(2, r)) Approximated solution (y

T
(2, r), yT(2, r)) Absolute error

0.0 (–2.341500, 17.688900) (–2.341499, 17.688902) (6.215545e207, 1.875812e206)
0.1 (–1.381580, 16.645780) (–1.381582, 16.645789) (2.279674e206, 8.584055e207)
0.2 (–0.421660, 15.602660 (–0.421661, 15.602662) (1.967348e207, 2.350311e207)
0.3 (0.538260, 14.559540) (0.538262, 14.559541) (1.503723e206, 0.211054e207)
0.4 (1.498180, 13.516420) (1.498185, 13.516421) (1.733932e206, 1.315011e206)
0.5 (2.458100, 12.473300) (2.458099, 12.473301) (1.531159e207, 1.104163e206)
0.6 (3.418019, 11.430180) (3.418017, 11.430185) (2.301750e207, 5.354311e207)
0.7 (4.377940, 10.387060) (4.377947, 10.387059) (7.801521e207, 8.412501e207)
0.8 (5.337860, 9.343940) (5.337862, 9.343942) (1.301100e207, 2.201216e206)
0.9 (6.297780, 8.300820) (6.297786, 8.300821) (6.189354e207, 1.521389e208)
1.0 (7.257731, 7.257731) (7.257732, 7.257732) (1.719323e207, 1.719218e207)

Figure 2. Comparison exact solution and approximated solution 8 in x= 1.
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