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A novel hybrid method for the solution of ordinary and partial differential equations is presented here.

The method creates trial solutions in neural network form using a scheme based on grammatical

evolution. The trial solutions are enhanced periodically using a local optimization procedure. The

proposed method is tested on a series of ordinary differential equations, systems of ordinary differential

are reported.
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1. Introduction

A series of problems in many scientific fields can be modelled
with the use of differential equations such as problems in physics
[1–5], chemistry [6–8], biology [9,10], economics [11], etc. Due to
the importance of differential equations many methods have been
proposed in the relevant literature for their solution such as Runge
Kutta methods [12–14], Predictor–Corrector [15–17], radial basis
functions [18,19], artificial neural networks [20–27], models based
on genetic programming [28,29], etc. In this article a hybrid
method utilizing constructed feed-forward neural networks by
grammatical evolution and a local optimization procedure is used
in order to solve ordinary differential equations (ODEs), systems of
ordinary differential equations (SODEs) and partial differential
equations (PDEs). The constructed neural networks with gram-
matical evolution have been recently introduced by Tsoulos et al.
[30] and it utilizes the well-established grammatical evolution
technique [31] to evolve the neural network topology along with
the network parameters. The method has been tested with
success on a series of data-fitting and classifications problems.
In this article the constructed neural network methodology is
applied on a series of differential equations while preserving the
initial or boundary conditions using penalization. The proposed
method does not require the user to enter any information
regarding the topology of the network. Also, the new method can
be used to solve either ODEs or PDEs and it can be easily
ll rights reserved.
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parallelized. This idea is similar to the cascade correlation neural
networks introduced by Fahlman and Lebiere [32] in which the
user is not required to enter any topology information. However,
the method for selecting the network topology differs since the
proposed algorithm is a stochastic one. In the proposed method,
the advantage of using an evolutionary algorithm is that the
penalty function (used for initial or boundary conditions) can be
incorporated easily into the training process.

The rest of this article is organized as follows: in Section 2 a
brief description of the grammatical evolution algorithm is given
followed by an analytical description of the proposed method, in
Section 3 the test functions used in the experiments followed by
the experimental results are outlined and in Section 4 some
conclusions are derived.
2. Method description

In this section a brief description of the grammatical evolution
algorithm is given. The main steps of the proposed algorithm are
outlined with the steps for the fitness evaluation for the cases of
ODEs, SODEs and PDEs.

2.1. Grammatical evolution

Grammatical evolution is an evolutionary technique that can
produce code in any programming language requiring the
grammar of the target language in BNF syntax and some proper
fitness function. This technique has been used with success in
many scientific fields such as symbolic regression [34], discovery
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Table 1
An example of the mapping procedure.

String Chromosome Operation

hexpri 9,8,6,4,16,10,17,23,8,14 9 mod 3 ¼ 0

(hexprihopihexpri) 8,6,4,16,10,17,23,8,14 8 mod 3 ¼ 2

(hterminalihopihexpri) 6,4,16,10,17,23,8,14 6 mod 2 ¼ 0

(hxlistihopihexpri) 4,16,10,17,23,8,14 4 mod 3 ¼ 1

(x2hopihexpri) 16,10,17,23,8,14 16 mod 4 ¼ 0

(x2þ hexpri) 10,17,23,8,14 10 mod 3 ¼ 1
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of trigonometric identities [35], robot control [36], caching
algorithms [37], financial prediction [38], etc. Chromosomes in
grammatical evolution, in contrast to classical genetic program-
ming [33], are not expressed as parse trees, but as vectors of
integers. Each integer denotes a production rule from the given
BNF grammar. The algorithm starts from the start symbol of the
grammar and gradually creates the program string, by replacing
non-terminal symbols with the right hand of the selected
production rule. The selection is performed in two steps:
(x2þ hfunciðhexpriÞ) 17,23,8,14 17 mod 4 ¼ 1

(x2þ cosðhexpriÞ) 23,8,14 23 mod 3 ¼ 2
�
 Read an element from the chromosome (with value V).

(x2þ cosðhterminaliÞ) 8,14 8 mod 2 ¼ 0
�

(x2þ cosðhxlistiÞ) 14 14 mod 3 ¼ 2

ðx2þ cosðx3ÞÞ
Select the rule according to the scheme

RULE ¼ V modR (1)

where R is the number of rules for the specific non-terminal
symbol. The process of replacing non-terminal symbols with the
right hand of production rules is continued until either a full
program has been generated or the end of chromosome has been
reached. In the latter case we can reject the entire chromosome or
we can start over (wrapping event) from the first element of the
chromosome. If the limit of the wrapping events is reached the
chromosome is rejected by assigning to it a large fitness value,
which prevents the chromosome to be used in the crossover
procedure. In the proposed algorithm the limit of wrapping events
was set to 2. As an example of the mapping procedure of the
grammatical evolution consider the BNF grammar shown in Fig. 1.
The number in parentheses denotes the sequence number of the
corresponding production rule to be used in the mapping
procedure. Consider the chromosome x ¼ ½9;8;6;4;16;10;17;
23;8;14�: The steps of the mapping procedure are listed in Table 1.
The final outcome of these steps is the expression x2 þ cosðx3Þ.

2.2. Algorithm description

The proposed method is based on an evolutionary algorithm, a
stochastic process whose basis lies in the biological evolution. In
order to measure the efficiency of the algorithm, a neural network
capable of solving differential equations is employed. The neural
network’s efficiency is used as the fitness of the evolutionary
Fig. 1. An example grammar.
algorithm along with a penalty function which is used in order to
represent the boundary or initial conditions of the differential
equations. The idea of combining a neural network with an
evolutionary algorithm is a well-established approach that has
been used numerous times both in the bibliography and in real-
world applications. The main steps of the algorithm are as follows:
1.
 Set the number of chromosomes S, the number of maximum
generations allowed K, the crossover rate pc , the mutation rate
pm, a small positive number � the integer parameter G and the
integer parameter M. The parameter G determines how
frequently the local search procedure will be applied and the
parameter M determines in how many chromosomes the local
optimization procedure will be applied.
2.
 Set iters ¼ 0.

3.
 Initialize the S chromosomes. Each chromosome will be

mapped to a neural network using a procedure described
subsequently in Section 2.3.
4.
 Calculate the fitness for every chromosome. The calculation of
the fitness is described in the following subsection.
5.
 Apply the genetic operations of crossover and mutation to the
population.
6.
 Set iters ¼ itersþ1.

7.
 If iters mod G ¼ 0 then

(a) For i ¼ 1 . . .M do
(i) Select randomly a chromosome Ri from the genetic

population.
(ii) Construct with the grammatical evolution procedure

the corresponding neural network NðRiÞ.
(iii) Train the neural network NðRiÞ with a local optimiza-

tion procedure.
(iv) Put the modified chromosome back to the genetic

population.
(b) End for
8.
 Endif

9.
 If itersXK or the best chromosomes have fitness value below

the predefined threshold � terminate, else goto step 4.

2.3. Neural network construction

Every chromosome in the genetic population is a vector of
integers, which is mapped through the mapping procedure of
grammatical evolution into a feed-forward artificial neural net-
work with one hidden level and one output. The output of the
constructed neural network is a summation of different sigmoidal
units and it can be formulated as

Nð x
!
; p
!
Þ ¼

XH

i¼1

pðdþ2Þi�ðdþ1Þs
Xd

j¼1

pðdþ2Þi�ðdþ1Þþjxj þ pðdþ2Þi

0
@

1
A (2)
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The constant d denotes the dimension of the input vector
x
!

, the parameter H denotes the number of the processing
units (hidden nodes) of the neural network and the
function sðxÞ is the sigmoidal function expressed by the
equation

sðxÞ ¼ 1

1þ expð�xÞ
(3)

The BNF grammar that controls the mapping procedure is shown
in Fig. 2. The sigmoidal functions used in the neural network can
be replaced by other functions including radial basis functions. By
introducing dynamic activation functions in the neural network, a
new parameter is introduced in the system. This new parameter
can be either encoded in the evolutionary algorithm or it can be
wrapped into another algorithm that first ‘‘selects’’ the optimal
activation function. In such cases it is usually required to use
crossvalidation to measure how well the selected activation
functions work. For further information regarding this matter
refer to [30].

2.4. Fitness evaluation

The fitness evaluation for the proposed model is performed
in a similar way as in [29] using penalization. The proposed
penalty function is used to force the neural network to train
on the boundary conditions (PDEs) or the initial conditions
(ODEs). The error function represents the neural network’s
misclassification rate and is necessary in order to measure its
efficiency.

2.4.1. ODE case

The method considers ODEs given in the following form:

f ðx; y; yð1Þ; . . . ; yðn�1Þ; yðnÞÞ ¼ 0; x 2 ½a; b� (4)

where yðnÞ denotes the nth-order derivative of y. The initial
conditions are expressed in the following form:

Ciðx; y; y
ð1Þ; . . . ; yðn�1ÞÞjx¼ti

¼ 0; i ¼ 1 . . .n (5)

where ti is either a or b: The steps for the fitness evaluation of any
given chromosome g are:
1.
 Choose T equidistant points in ½a; b� denoted by ½x0; x1; . . . ; xT�1�.

2.
 Construct the neural network Nðx; gÞ using grammatical

evolution.

3.
 Calculate the train error of the network using the equation

EðNðgÞÞ ¼
XT�1

i¼0

ðf ðxi;Nðxi; gÞ;N
ð1Þ
ðxi; gÞ; . . . ;N

ðnÞ
ðxi; gÞÞÞ

2 (6)
Fig. 2. The proposed grammar.
4.
 Calculate the penalty value PðNðgÞÞ using the following
equation:

PðNðgÞÞ ¼ l
Xn

k¼1

C2
k ðx;Nðx; gÞ;N

ð1Þ
ðx; gÞ; . . . ;Nðn�1Þ

ðx; gÞÞjx¼tk
(7)

where l is a positive number.

5.
 Calculate the final fitness value as

VðgÞ ¼ EðNðx; gÞÞ þ PðNðx; gÞÞ (8)

2.4.2. SODE case

The proposed method deals with SODEs expressed in the form

f 1ðx; y1; y
ð1Þ
1 ; y2; y

ð1Þ
2 ; . . . ; yk; y

ð1Þ
k Þ ¼ 0

f 2ðx; y1; y
ð1Þ
1 ; y2; y

ð1Þ
2 ; . . . ; yk; y

ð1Þ
k Þ ¼ 0

..

. ..
. ..

.

f kðx; y1; y
ð1Þ
1 ; y2; y

ð1Þ
2 ; . . . ; yk; y

ð1Þ
k Þ ¼ 0

0
BBBBBB@

1
CCCCCCA
; x 2 ½a; b� (9)

with the following initial conditions:

y1ðaÞ ¼ y1a

y2ðaÞ ¼ y2a

..

.

ykðaÞ ¼ yka

0
BBBBB@

1
CCCCCA (10)

The steps for the fitness evaluation of any given chromosome g are
the following:
1.
 Choose T equidistant points in ½a; b� denoted by ½x0; x1; . . . ; xT�1�.

2.
 Split the chromosome g into k parts and construct using

grammatical evolution the neural networks N1ðx; gÞ;N2

ðx; gÞ; . . . ;Nkðx; gÞ.

3.
 Calculate the train errors EðNiðgÞÞ; i ¼ 1 . . . k for every neural

network using the equation

EðNiðx; gÞÞ

¼
XT�1

j¼0

ðf iðxj;N1ðxj; gÞ;N
ð1Þ
1 ðxj; gÞ; . . . ;Nkðxj; gÞ;N

ð1Þ
k ðxj; gÞÞÞ

2 (11)
4.
 Calculate the penalty value for every neural network
Niðx; gÞ; i ¼ 1 . . . k:

PðNiðgÞÞ ¼ lðNiða; gÞ � yiaÞ
2 (12)
5.
 Calculate the total fitness value

VðgÞ ¼
Xk

i¼1

EðNiðx; gÞÞ þ PðNiðx; gÞÞ (13)

2.4.3. PDE case

The proposed method deals with PDEs of two variables with
Dirichlet boundary conditions, without loss of generality. The
PDEs must be expressed in the form

f x; y;Cðx; yÞ;
q
qx

Cðx; yÞ;
q
qy

Cðx; yÞ;
q2

qx2
Cðx; yÞ;

q2

qy2
Cðx; yÞ

 !
¼ 0

(14)

with x 2 ½a;b� and y 2 ½c;d�. The boundary conditions are given by:
1.
 Cða; yÞ ¼ f 0ðyÞ.

2.
 Cðb; yÞ ¼ f 1ðyÞ.

3.
 Cðx; cÞ ¼ g0ðxÞ.

4.
 Cðx; dÞ ¼ g1ðxÞ.
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The steps for the calculation of the fitness for any chromosome g

are:
1.
 Choose T uniformly distributed points in the grid ½a; b� � ½c; d�
denoted by ½xi; yi�; i ¼ 0 . . . T � 1.
2.
 Choose B equidistant points in ½a; b� denoted by
xbi; i ¼ 0 . . .B� 1.
3.
 Choose B equidistant points in ½c; d� denoted by ybi; i ¼ 0 . . .B�
1:
4.
 Construct the neural network Nðx; y; gÞ using the grammatical
evolution procedure.
5.
 Calculate the train error of the neural network Nðx; y; gÞ:

EðNðx; y; gÞÞ ¼
XT�1

i¼0

f x; y;Nðx; y; gÞ;
q
qx

Nðx; y; gÞ;
q
qy

Nðx; y; gÞ;

�

q2

qx2
Nðx; y; gÞ;

q2

qy2
Nðx; y; gÞ

!2

(15)
6.
 Calculate the penalty quantities

P1ðNðx; y; gÞÞ ¼ l
XB�1

i¼0

ðNða; ybi; gÞ � f 0ðybiÞÞ
2

P2ðNðx; y; gÞÞ ¼ l
XB�1

i¼0

ðNðb; ybi; gÞ � f 1ðybiÞÞ
2

P3ðNðx; y; gÞÞ ¼ l
XB�1

i¼0

ðNðxbi; c; gÞ � g0ðxbiÞÞ
2

P4ðNðx; y; gÞÞ ¼ l
XB�1

i¼0

ðNðxbi; d; gÞ � g1ðxbiÞÞ
2 (16)

where l is a positive real number.

7.
 Calculate the total fitness with

VðgÞ ¼ EðNðx; y; gÞÞ þ P1ðNðx; y; gÞÞ þ P2ðNðx; y; gÞÞ

þ P3ðNðx; y; gÞÞ þ P4ðNðx; y; gÞÞ (17)

3. Experiments

The proposed method was tested on a series of ODEs, non-
linear ODEs, SODEs and PDEs with two variables and Dirichlet
boundary conditions. These test functions are listed subsequently
and they have been used in the experiments performed in [20,29].
In all the experiments, the ODEs were sampled using a uniform
distribution and only 1000 samples were extracted in the
intervals of x for each case. In the following subsections, the
ODEs are presented for each one of the four series.

3.1. Linear ODEs

ODE1:

y0 ¼
2x� y

x

with yð1Þ ¼ 3 and x 2 ½1;2�. The analytical solution is
yðxÞ ¼ xþ 2=x.

ODE2:

y0 ¼
1� y cosðxÞ

sinðxÞ

with yð1Þ ¼ 3= sinð1Þ and x 2 ½1;2�. The analytical solution is
yðxÞ ¼ ðxþ 2Þ= sinðxÞ.

ODE3:

y00 ¼ 6y0 � 9y

with yð0Þ ¼ 0 and y0ð0Þ ¼ 2 and x 2 ½0;1�. The analytical solution is
yðxÞ ¼ 2x expð3xÞ.
ODE4:

y0 0 ¼ �
1

5
y0 � y�

1

5
exp �

x

5

� �
cosðxÞ

with yð0Þ ¼ 0 and yð1Þ ¼ sinð0:1Þ= expð0:2Þ and x 2 ½0;1�. The
analytical solution is yðxÞ ¼ expð�x=5Þ sinðxÞ.

ODE5:

y0 0 þ
1

x
y0 �

1

x
cosðxÞ ¼ 0

with yð0Þ ¼ 0; y0ð0Þ ¼ 1 and x 2 ½0;1�: The solution is given by

yðxÞ ¼

Z x

0

sinðtÞ

t
dt

ODE6:

y00 þ 2xy ¼ 0

with yð0Þ ¼ 0; y0ð0Þ ¼ 1 and x 2 ½0;1�: The solution is given by

yðxÞ ¼

Z x

0
expð�t2Þdt

ODE7:

y00ðx2 þ 1Þ � 2xy� x2 � 1 ¼ 0

with yð0Þ ¼ 0; y0ð0Þ ¼ 1 and x 2 ½0;1�: The analytical solution is
yðxÞ ¼ ðx2 þ 1Þ arctanðxÞ.

3.2. Non-linear ODEs

NLODE1:

y00 ¼
1

2y

with yð1Þ ¼ 1 and x 2 ½1;4�. The analytical solution is given by
yðxÞ ¼

ffiffiffi
x
p

.
NLODE2:

ðy0Þ2 þ logðyÞ � cos2ðxÞ � 2 cosðxÞ � 1� logðxþ sinðxÞÞ ¼ 0

with yð1Þ ¼ 1þ sinð1Þ and x 2 ½1;2�. The analytical solution is
yðxÞ ¼ xþ sinðxÞ.

NLODE3:

y00y0 ¼ �
4

x3

with yð1Þ ¼ 0 and x 2 ½1;2�: The analytical solution is given by
yðxÞ ¼ logðx2Þ.

NLODE4:

x2y00 þ ðxy0Þ2 þ
1

logðxÞ
¼ 0

with yðeÞ ¼ 0; y0ðeÞ ¼ 1=e and x 2 ½e;2e�: The analytical solution is
yðxÞ ¼ logðlogðxÞÞ.

3.3. Systems of ODEs

SODE1:

y01 ¼ cosðxÞ þ y2
1 þ y2 � ðx

2 þ sin2
ðxÞÞ

y02 ¼ 2x� x2 sinðxÞ þ y1y2

with y1ð0Þ ¼ 0; y2ð0Þ ¼ 0 and x 2 ½0;1�: The analytical solution is
given by: y1ðxÞ ¼ sinðxÞ; y2ðxÞ ¼ x2.

SODE2:

y01 ¼
cosðxÞ � sinðxÞ

y2

y02 ¼ y1y2 þ expðxÞ � sinðxÞ
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Table 2
The numerical values for the parameters of the method.

Name Value

S 500

K 2000

pc 0.9

pm 0.05

� 10�6

l 100

G 20

M 20

T 100

B 10

Table 3
Experimental results of the proposed method.

Problem Train error Test error Generations

ODE1 1:6� 10�8 1:5� 10�8 111

ODE2 5:0� 10�8 1:5� 10�8 78

ODE3 4:4� 10�9 4:2� 10�9 43

ODE4 1:0� 10�9 1:0� 10�9 189

ODE5 1:9� 10�8 2:0� 10�8 119

ODE6 4:7� 10�8 4:7� 10�8 65

ODE7 2:3� 10�8 2:5� 10�8 913

NLODE1 3:2� 10�8 3:1� 10�8 69

NLODE2 1:1� 10�8 1:1� 10�8 405

NLODE3 1:2� 10�6 1:2� 10�6 842

NLODE4 1:1� 10�7 1:1� 10�7 289

SODE1 2:3� 10�5 2:1� 10�5 1422

SODE2 2:8� 10�6 2:7� 10�6 1078

SODE3 2:1� 10�5 2:3� 10�5 1136

SODE4 5:8� 10�7 5:9� 10�7 827

PDE1 3:9� 10�7 1:6� 10�7 1034

PDE2 9:6� 10�8 5:1� 10�8 996

PDE3 8:5� 10�8 4:7� 10�8 189

PDE4 1:9� 10�6 1:1� 10�6 1267
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with y1ð0Þ ¼ 0; y2ð0Þ ¼ 1 and x 2 ½0;1�. The analytical solution is
given by: y1ðxÞ ¼ sinðxÞ= expðxÞ; y2ðxÞ ¼ expðxÞ.

SODE3:

y01 ¼ cosðxÞ

y02 ¼ �y1

y03 ¼ y2

y04 ¼ �y3

y05 ¼ y4

with y1ð0Þ ¼ 0; y2ð0Þ ¼ 1; y3ð0Þ ¼ 0; y4ð0Þ ¼ 1; y5ð0Þ ¼ 0 and x 2

½0;1�: The analytical solution is given by: y1ðxÞ ¼ sinðxÞ; y2

ðxÞ ¼ cosðxÞ; y3ðxÞ ¼ sinðxÞ; y4ðxÞ ¼ cosðxÞ; y5ðxÞ ¼ sinðxÞ.
SODE4:

y01 ¼ �
1

y2
sinðexpðxÞÞ

y02 ¼ � y2

with y1ð0Þ ¼ cosð1:0Þ; y2ð0Þ ¼ 1:0 and x 2 ½0;1�:The analytical
solution is given by: y1ðxÞ ¼ cosðexpðxÞÞ; y2ðxÞ ¼ expð�xÞ.

3.4. PDEs

PDE1:

r
2Cðx; yÞ ¼ expð�xÞðx� 2þ y3 þ 6yÞ

with x 2 ½0;1�; y 2 ½0;1� and the boundary conditions: Cð0; yÞ ¼
y3; Cð1; yÞ¼ð1þ y3Þ expð�1Þ; Cðx;0Þ ¼x expð�xÞ; Cðx;1Þ ¼ ðxþ 1Þ
expð�xÞ. The analytical solution is given by: Cðx; yÞ ¼ ðxþ y3Þ

expð�xÞ.
PDE2:

r
2Cðx; yÞ ¼ �2Cðx; yÞ

with x 2 ½0;1�; y 2 ½0;1�: The associated boundary conditions
are: Cð0; yÞ ¼ 0; Cð1; yÞ ¼ sinð1Þ cosðyÞ; Cðx;0Þ ¼ sinðxÞ; Cðx;1Þ ¼
sinðxÞ cosð1Þ. The analytical solution is given by: Cðx; yÞ ¼
sinðxÞ cosðyÞ.

PDE3:

r2Cðx; yÞ ¼ 4

with x 2 ½0;1�; y 2 ½0;1�: The boundary conditions are: Cð0; yÞ ¼
y2 þ yþ 1; Cð1; yÞ¼y2 þ yþ 3; Cðx;0Þ ¼ x2 þ xþ 1; Cðx;1Þ ¼ x2þ

xþ 3: The analytical solution is given by: Cðx; yÞ ¼ x2 þ y2þ

xþ yþ 1.
PDE4:

r2Cðx; yÞ ¼ ðx� 2Þ expð�xÞ þ x expð�yÞ

with x 2 ½0;1�; y 2 ½0;1�. The boundary conditions are given
by: Cð0; yÞ ¼ 0; Cð1; yÞ ¼ sinðyÞ; Cðx;0Þ ¼ 0; Cðx;1Þ ¼ sinðxÞ. The
analytical solution is given by: Cðx; yÞ ¼ sinðxyÞ.

3.5. Experimental results

The method was performed 30 times, using different seeds for
the random number generator each time, on every differential
equation described previously and averages were taken. In Table 2
the numerical values for the parameters of the algorithm are
listed. The numerical values for the majority of these parameters
were taken from the papers of Lagaris et al. [20] and Tsoulos et al.
[30] and some of them have been found experimentally. The local
optimization procedure used in the experiments was a BFGS
variant due to Powell [39]. In Table 3 the results from the
application to the test functions of the proposed method are
listed. The column TRAIN ERROR denotes the average per point
error of the proposed method to the T points of the training set,
the column TEST ERROR denotes the average per point ERROR of
the proposed method to the points belonging to the test set
and the column GENERATIONS denote the average number of the
required generations of the genetic algorithm. For the cases of
ODEs and SODEs the test set had 1000 equidistant points and for
the case of PDEs the test set had 10 000 uniformly distributed
points. In Fig. 3 we can observe the progress of solution for an
example run for ODE1. As we can notice, the proposed method
managed in 60 generations to solve the objective problem. Also in
Fig. 4, the application of the final solution in range [1:3] is plotted
against the true solution f ðxÞ ¼ xþ 2=x. As we can see, the final
solution maintains its equality even outside the training domain.
Furthermore, in Table 4 we list the experimental results for the
same problem using different values of the parameter l. As it can
be noticed, the method succeeds in solving the problem even for
small values of the critical parameter l. As we can notice from the
column GENERATIONS of Table 3 the proposed method managed
to solve all ODEs in very little time, if time is expressed as the
number of required generations. The proposed method is a
combination of two types of algorithms: a stochastic (genetic
algorithm) and a deterministic one. This fact raises some stability
issues so, in order to overcome this, each experiment ran for
30 times with a different seed in order to diminish any random
variations in the experimental results. The stability issues mostly
refer to the stochastic nature of the proposed algorithm. This
means that it does not always converge to the same local
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Table 4

Solving the ODE1 problem for different values of parameter l.

l Train error Test error Generations

10 2:4� 10�9 2:5� 10�9 100

100 1:6� 10�8 1:5� 10�8 111

1000 2:2� 10�10 2:3� 10�9 100
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minimum. That is why in the experimental setup each experiment
ran for 30 times with different seeds.
4. Conclusions

In conclusion, a novel method for solving ODEs, PDEs and
SODEs is presented. This method utilizes neural networks that are
constructed using artificial neural networks that are constructed
using grammatical evolution. This novel method for simulta-
neously constructing and training neural networks has been used
successfully in other domains. Concerning the differential equa-
tions problem, a series of experiments in 19 well-known
problems, showed that the proposed method managed to solve
all the problems. Although a number of methods for solving
differential equations exist, the proposed one has very little
execution time and does not require the user to enter any
parameters. The main advantages of the proposed method are the
following:
1.
 The user is only required to sample the differential equations
in order to create the train/test files.
2.
 The method is general enough to be applied to ODEs, SODEs
and PDEs.
3.
 The final solution is expressed in a closed analytical form
(neural network form) which is a differentiable form.
4.
 The final solution provides good generalization abilities, even
outside the domain of the differential equation.
5.
 The proposed method is based on genetic algorithms, which
means that it can be easily parallelized.
6.
 The proposed method can be extended by using different BNF
grammars for the constructed neural networks with different
topologies (such as recurrent neural networks) or different
activation functions.
7.
 The method can be extended to solve higher order differential
equations, a task that is currently being researched.
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