array(2) { ["lab"]=> string(3) "770" ["publication"]=> string(4) "7923" } Retrieval of Fine-Resolution Aerosol Optical Depth (AOD) in Semiarid Urban Areas Using Landsat Data: A Case Study in Urumqi, NW China - 丁建丽团队—干旱区遥感科学与技术 | LabXing

丁建丽团队—干旱区遥感科学与技术

简介 聚焦干旱区科学前沿研究,包括智能遥感应用、土壤盐渍化、生态水文、大气环境、遥感科学、智慧城市等方向。

分享到

Retrieval of Fine-Resolution Aerosol Optical Depth (AOD) in Semiarid Urban Areas Using Landsat Data: A Case Study in Urumqi, NW China

2020
期刊 Remote Sensing
下载全文
The aerosol optical depth (AOD) represents the light attenuation by aerosols and is an important threat to urban air quality, production activities, human health, and sustainable urban development in arid and semiarid regions. To some extent, the AOD reflects the extent of regional air pollution and is often characterized by significant spatiotemporal dynamics. However, detailed local AOD information is ambiguous at best due to limited monitoring techniques. Currently, the availability of abundant satellite data and constantly updated AOD extraction algorithms offer unprecedented perspectives for high-resolution AOD extraction and long-time series analysis. This study, based on the long-term sequence MOD09A1 data from 2010 to 2018 and lookup table generation, uses the improved deep blue algorithm (DB) to conduct fine-resolution (500 m) AOD (at 550 nm wavelength) remote sensing (RS) estimation on Landsat TM/OLI data from the Urumqi region, analyzes the spatiotemporal AOD variation characteristics in Urumqi and combines gray relational analysis (GRA) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to analyze AOD influence factors and simulate pollutant propagation trajectories in representative periods. The results demonstrate that the improved DB algorithm has a high inversion accuracy for continuous AOD inversion at a high spatial resolution in urban areas. The spatial AOD distribution in Urumqi declines from urban to suburban areas, and higher AODs are concentrated in cities and along roads. Among these areas, Xinshi District has the highest AOD, and Urumqi County has the lowest AOD. The seasonal AOD variation characteristics are distinct, and the AOD order is spring (0.411) > summer (0.285) > autumn (0.203), with the largest variation in spring. The average AOD in Urumqi is 0.187, and the interannual variation generally shows an upward trend. However, from 2010 to 2018, AOD first declined gradually and then declined significantly. Thereafter, AOD reached its lowest value in 2015 (0.076), followed by a significant AOD increase, reaching a peak in 2016 (0.354). This shows that coal to natural gas (NG) project implementation in Urumqi promoted the improvement of Urumqi’s atmospheric environment. According to GRA, the temperature has the largest impact on the AOD in Urumqi (0.699). Combined with the HYSPLIT model, it was found that the aerosols observed over Urumqi were associated with long-range transport from Central Asia, and these aerosols can affect the entire northern part of China through long-distance transport.