array(2) { ["lab"]=> string(3) "770" ["publication"]=> string(4) "9454" } The Capability of Integrating Optical and Microwave Data for Detecting Soil Moisture in an Oasis Region - 丁建丽团队—干旱区遥感科学与技术 | LabXing

丁建丽团队—干旱区遥感科学与技术

简介 聚焦干旱区科学前沿研究,包括智能遥感应用、土壤盐渍化、生态水文、大气环境、遥感科学、智慧城市等方向。

分享到

The Capability of Integrating Optical and Microwave Data for Detecting Soil Moisture in an Oasis Region

2020
期刊 Remote Sensing
下载全文
In the earth ecosystem, surface soil moisture is an important factor in the process of energy exchange between land and atmosphere, which has a strong control effect on land surface evapotranspiration, water migration, and carbon cycle. Soil moisture is particularly important in an oasis region because of its fragile ecological environment. Accordingly, a soil moisture retrieval model was conducted based on Dubois model and ratio model. Based on the Dubois model, the in situ soil roughness was used to simulate the backscattering coefficient of bare soil, and the empirical relationship was established with the measured soil moisture. The ratio model was used to eliminate the backscattering contribution of vegetation, in which three vegetation indices were used to characterize vegetation growth. The results were as follows: (1) the Dubois model was used to calibrate the unknown parameters of the ratio model and verified the feasibility of the ratio model to simulate the backscattering coefficient. (2) All three vegetation indices (Normalized Difference Vegetation Index (NDVI), Vegetation Water Content (VWC), and Enhanced Vegetation Index (EVI)) can represent the scattering characteristics of vegetation in an oasis region, but the VWC vegetation index is more suitable than the others. (3) Based on the Dubois model and ratio model, the soil moisture retrieval model was conducted, and the in situ soil moisture was used to analyze the accuracy of the simulated soil moisture, which found that the soil moisture retrieval accuracy is the highest under VWC vegetation index, and the coefficient of determination is 0.76. The results show that the soil moisture retrieval model conducted on the Dubois model and ratio model is feasible.