array(2) { ["lab"]=> string(3) "868" ["publication"]=> string(4) "9567" } A review of computer vision technologies for plant phenotyping - Computer Vision Research Group(计算机视觉实验室) | LabXing

Computer Vision Research Group(计算机视觉实验室)

简介 计算机视觉与图像处理

分享到

A review of computer vision technologies for plant phenotyping

2020
期刊 Computers and Electronics in Agriculture
下载全文
Plant phenotype plays an important role in genetics, botany, and agronomy, while the currently popular methods for phenotypic trait measurement have some limitations in aspects of cost, performance, and space-time coverage. With the rapid development of imaging technology, computing power, and algorithms, computer vision has thoroughly revolutionized the plant phenotyping and is now a major tool for phenotypic analysis. Based on the above reasons, researchers are devoted to developing image-based plant phenotyping methods as a complementary or even alternative to the manual measurement. However, the use of computer vision technology to analyze plant phenotypic traits can be affected by many factors such as research environment, imaging system, research object, feature extraction, model selection, and so on. Currently, there is no review paper to compare and analyze these methods thoroughly. Therefore, this review introduces the typical plant phenotyping methods based on computer vision in detail, with their principle, applicable range, results, and comparison. This paper extensively reviews 200+ papers of plant phenotyping in the light of its technical evolution, spanning over twenty years (from 2000 to 2020). A number of topics have been covered in this paper, including imaging technologies, plant datasets, and state-of-the-art phenotyping methods. In this review, we categorize the plant phenotyping into two main groups: plant organ phenotyping and whole-plant phenotyping. Furthermore, for each group, we analyze each research of these groups and discuss the limitations of the current approaches and future research directions.