array(2) { ["lab"]=> string(4) "1026" ["publication"]=> string(5) "14819" } Large-scale programmable assembly of functional micro-components for advanced electronics via light-regulated adhesion and polymer growth - 新型显示技术实验室 | LabXing

新型显示技术实验室

简介 致力于前沿显示技术方面的研究,包括Micro-LED显示、量子点显示等

分享到

Large-scale programmable assembly of functional micro-components for advanced electronics via light-regulated adhesion and polymer growth

2022
期刊 npj Flexible Electronics
下载全文
AbstractLarge-area, programmable assembly of diverse micro-objects onto arbitrary substrates is a fundamental yet challenging task. Herein a simple wafer-level micro-assembly technique based on the light-triggered change in both surface topography and interfacial adhesion of a soft photo-sensitive polymer is proposed. In particular, the light-regulated polymer growth creates locally indented and elevated zones on the stamp surface. The light-mediated adhesion reduction, on the other hand, facilitates the inks to be released from the polymer. The interplay of these two effects makes it feasible for the programmable assembly of ultra-small components onto various substrates coated with supplementary adhesive layers. The fidelity of this technique is validated by assembling diverse materials and functional devices, with the printing size up to 4-inch. This work provides a rational strategy for large-scale and programmable assembly of diverse delicate micro-objects, bypassing the common issues of some existing techniques such as poor transfer uniformity, small printing area, and high cost.