array(2) { ["lab"]=> string(4) "1321" ["research"]=> string(4) "1580" } 多媒体计算传输先进优化方法 - MARVEL (奇迹实验室) | LabXing

MARVEL (奇迹实验室)

Multimedia and AI Research for Visual Transmission Exploratory Laboratory

多媒体计算传输先进优化方法

       多媒体计算传输优化平台。面对用户设备多样性带来的不同视频分辨率的不同需求,无线传输信道的不可靠性和不稳定性等问题,通过设计的新型喷泉码和分级嵌入的空时分组码等信道编码技术,实现异构环境下视频数据可靠、灵活的传输。通过评估D2D视频组播系统下的异构用户体验质量,综合考虑信道状态、设备能力、视频内容紧迫性和需求用户的数量,将多视频流广播问题转换为实现聚合最大效用问题。通过利用机会调度方法在每个传输间隔内选择合适的用户来提高广播效用,同时构建了效用公平方案来优化多内容视频组播的速率。上述平台尤其适用于视频广播系统中,提升视频传输的实时性、可靠性以及稳定性等,极大的改善系统应用的服务质量和效率。

相关研究成果:

  1. Wen Ji, and H. V. Poor, "Risk Optimization for Revenue-Driven Wireless Video Broadcasting Systems: A Copula-Based Framework," IEEE Transactions on Multimedia, vol. 23, pp. 1757-1771, June. 2021.
  2. Wen Ji, Bo-Wei Chen, Xiangdong Wang, Haiyong Luo, Mucheol Kim, and Yiqiang Chen, "Cross-Layer Opportunistic Scheduling for Device-to-Device Video Multicast Services," ACM Transactions on Embedded Computing Systems, vol. 15, no. 2, pp. 37:1-37:18, Feb. 2016.
  3. Wen Ji, Pascal Frossard, Bo-Wei Chen, and Yiqiang Chen, "Profit Optimization for Wireless Video Broadcasting Systems Based on Polymatroidal Analysis," IEEE Transactions on Multimedia, vol. 17, no. 12, pp. 2310-2327, Dec. 2015.
  4. Wen Ji, Bo-Wei Chen, Yiqiang Chen, and Sun-Yuan Kung, "Profit Improvement in Wireless Video Broadcasting System: A Marginal Principle Approach," IEEE Transactions on Mobile Computing, vol. 14, no. 8, pp. 1659-1671, Aug. 2015.
  5. Linqing Zhai, Zheming Yang, and Wen Ji, "Understanding Crowd Intelligence in Large-scale Systems: A Hierarchical Binary Particle Swarm Optimization Approach," IEEE International Symposium on Parallel & Distributed Processing with Applications (ISPA), 2020, pp. 728-735.
创建: Aug 19, 2021 | 16:41